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Abstract The Harary–Palmer classic power group enumeration theorem applies to a
group G acting on a set D of objects such as vertices, edges, faces and simultaneously
with a group H acting on another set R of colors such that the power group HG acts on
the set RD of all functions from D to R. In this paper we show for the first time that the
power group enumeration can be generalized to all irreducible representations of the
object group G of D and also all irreducible representations of the color group H of R.
We have also provided interpretation of various power group generating functions for
different irreducible representations in the context of color symmetry group theory.
Special cases of the power group enumeration with all irreducible representations of
G keeping the color group representation fixed to the totally symmetric representation
are shown to have important enumerative combinatorial applications in a number
of problems of chemistry, physics and biology that involve color symmetry (color
inversions) such as magnetism, neutron imaging, NMR, ESR spectroscopy, catalytic
functions of non-rigid disordered proteins, and quantum chromodynamics of strong
interactions of fundamental particles.
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1 Introduction

Color and color symmetry play fundamental roles in both scientific disciplines and
arts [1–7]. A number of fascinating problems in mathematics originate from colors,
for example, the celebrated four-color problem of combinatorics [8]. Although in a
purely mathematical sense, colors facilitate labeling or book-keeping different objects
through mappings, aesthetics of different ways of colorings has been intertwined with
cultures, traditions and arts. Color symmetry concepts thus naturally arise in many
fields of arts and cultures, for example, elegant color patterns called the Rangoli
patterns illustrated in Fig. 1 that are native to India. In fact, extensive research has
been carried out on cultural, ethnographic, and ecological significances of geometric
patterns called Kolams of southern India folklore [9–11].

Color symmetry is fundamental to magnetic spin symmetry of fermions and bosons
in that spin flipping can be envisaged as a color inversion operation. That is, for a spin-
1/2 fermion this would mean interchanging spin function α with β for all spin-particles.
As such a spin-flip operation leads to invariance in the magnitude of the eigenvalues of
interactions along the z-component, there is a natural symmetry of signals appearing in
NMR and ESR spectroscopies of such systems. For example, n−2 multiple-quantum
NMR of benzene [12] exhibits symmetric distribution of signals on either side of the
central peak- clearly a manifestation of spin-flip or color-inversion symmetry. Likewise

Fig. 1 A Rangoli pattern from India with a hexagonal D6 symmetry of outer petals (from, http://www.
theholidayspot.com/diwali/rangoli.htm). The Power Group Enumeration asks for how many different Ran-
goli patterns are possible under the action of the D6 group on petals forming the hexagon with 4 different
colors (white, green, red, yellow) such that white is fixed and three colors can be interchanged through
the action of color group S3 acting on the three colors (green, red, and yellow). See, Refs [9–11] for
ethnographic, ecological and other significances (Color figure online)
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for the general boson, the interchange of spin functions for −Iz and +Iz would result
in a similar invariance characterized by color symmetry concept of Shubnikov [1].
Consider for instance, bismuth clusters (Bin) which are extremely interesting because
of both relativistic effects and aromaticity [13,14]. Moreover, 209bismuth exhibits
an unusually high nuclear spin quantum number of S=9/2, and consequently, it has
been a subject of number of studies in two-dimensional and solid state NMR [15–
17]. The spin 9/2 particle would exhibit 10 orientations labeled by −9/2, −7/2, −5/2,
−3/2, −1/2, 1/2, 3/2, 5/2,7/2 and 9/2 quantum numbers and thus spin-flips would be
characterized by a color group of two operations- one of them involving flips of −9/2
to 9/2, −7/2 to 7/2, −3/2 to 3/2 and −1/2 to 1/2. Thus it is clear that color symmetry
combinatorics would find important applications in the enumeration of symmetry-
adapted spin functions with S2 color symmetry that results in all interchange of 2
colors for spins −Iz and +Iz.

In the field of quantum chromodynamics of strong interactions, quark states are
characterized by three colors (blue, red and green) and thus the SU(3) group and
the associated Weyl Tableau play an important role in characterizing the symmetry-
adapted functions for the fundamental particles with three quark flavors represented
by u, d, and s. The various mixed symmetry states of baryons are then characterized by
symmetry adapted linear combinations of three-particle states, where u,d and s desig-
nate orthogonal single-particle states in the SU(3) group. In this instance, generating
wavefunctions of the baryons involve direct products of three-irreducible represen-
tations in the SU(3) group which can be subduced into the S3 symmetric group to
generate the irreducible components. For instance 3 × 3 × 3 direct product in SU(3)
subduces into a 27-dimensional reducible representation in the S3 group resulting in
various symmetry-adapted linear combinations of wavefunctions, characterizing dif-
ferent mixed symmetry states of the baryons. Here again one can see the role of the
permutation group and color symmetry through Young diagrams and the associated
Weyl tableaus.

Combinatorial applications to chemistry in the context of enumeration of isomers,
nuclear spin statistics, NMR, ESR spectrocopies and chirality have been the topic of
many papers [18–51]. An example of combinatorial application in chemical context
that involves color symmetry is association of vectors or directions on various atoms of
a molecule. This naturally arises in dealing with molecular vibrational normal modes
where each atom is labeled by three orthogonal vectors to designate the three degrees
of freedom on each atom. Likewise the p orbitals on each center can be represented by
3 orthogonal vectors on each atom. Hässelbarth [52] has suggested the use of power
group enumeration in these instances, except that this application, in fact, does not use
the full power group approach in that the group acting on colors is not independent
of the group acting on objects. That is, in this particular case, the group acting on the
vertices of a graph determines also the action on the colors, and thus we do not have
two different groups acting on colors and objects. Thus this amounts to a single group
G with different orbits for the vertices and vectors.

Balaban [27,53,54] has employed the power group enumeration theorem and Red-
field’s [57] cup and cap operations to generate the valence isomers of annulenes.
This is a natural application of Harary and Palmer’s [60] enumeration of graphs
using the power group enumeration. Read [55] and Davidson [56] have independently
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Fig. 2 A Möbius strip provides a suitable representation of the relativistic spinors. The introduction of
spin-orbit coupling into the relativistic Hamiltonian causes the periodicity of the symmetry group into
double group symmetry, as the rotation by 360◦ is no longer the identity operation. Generalization of this to
other complex phases results in Berry’s phase, where a rotation by 360 may yield exp(i2π/n) thus resulting
in other kinds of periodicity

considered various applications of Redfield’s [57] superposition theorem. Balasubra-
manian [51] has previously generalized de Bruijn’s theorem [58,59] for all irreducible
representations. De Bruijn’s theorem [59] is a special case of the power group enumer-
ation theorem of Harary and Palmer [60] where the group acting on colors is restricted
to the S2 group, sometimes referred to as inversion of two colors. With the exception
of these previous applications, very few studies have considered chemical application
of power group enumeration.

Stimulated by the classic work of Longuet–Higgins [61] on the symmetry groups of
non-rigid molecules as permutation-inversion groups, Balasubramanian [62] has con-
sidered the symmetry groups of non-rigid molecules as generalized wreath products
and more recently its extension to relativistic double group spinors of non-rigid mole-
cules [63]. When spin-orbit coupling is introduced into the Hamiltonian, a generalized
relativistic representation of the electronic states of molecules emerges, especially for
molecules comprised of heavy atoms. Such a treatment requires a Möbius represen-
tation as exemplified in Fig. 2. The relativistic double group spinor representations
of non-rigid molecules in the double groups of generalized wreath products were
considered by Balasubramanian [63] previously. King [64] has exemplified Möbius
aromaticity of Rh-centered bismuth clusters such as RhBi7 and it has been shown
using combinatorial methods that certain arrangements and electron counts are more
favored for such Mobius aromatic clusters.

In this paper, we are presenting for the first time generalization of the power group
enumeration theorem to all irreducible representations of not only the object group
but also color groups. Thus for the first time a table of nG × nH generating functions
is constructed, where nG is the number of irreducible representations of the group
G, while nH is the number of irreducible representations of the group H. We have
also provided a physical interpretation of the newly obtained generating functions for
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different irreducible representations of the object group G together with the action of
the color group H on the set of colors. To the best of author’s knowledge, this is the
first time such a powerful enumeration is considered for all irreducible representations
of the power group and the new table of generating functions thus obtained in the form
of a nG ×nH table of generating functions consists of a plethora of new results in color
combinatorial group theory.

2 De Bruijn theorem and the Harary–Palmer power group enumeration
theorem

2.1 De Bruijn’s theorem and Pólya preliminaries

Let D be a set of objects, which we call the object set and let R be a set of colors,
which we call the color set. Moreover let G be a permutation group acting on D such
that two maps fi and f2 from D to R are equivalent, if there exists a g ε G such that

f1 (d) = f2 (gd) f or all d ε D

For each r ε GR a weight w(r) can be assigned such that one can define the weight
W ( f ), the weight of a function f: D → R as follows:

W ( f ) = �
d ε D

w( f (d))

Define the ordinary cycle index of a group G acting on a set D as

PG = 1

|G|
∑

gεG

sb1
1 sb2

2 . . . . . . sbn
n (1)

where sb1
1 sb2

2 . . . ..sbn
n in (1) is a cycle representation for g ε G if it generates b1 cycles

of length 1, b2 cycles of length 2, etc., upon its action on the elements of the set D.
Pólya’s theorem [37] yields a generating function for the equivalence classes of maps
from f: D → R as follows:

G F = PG

(
sk →

∑

rεR

[(w(r)]k

)
(2)

where the arrow symbol in (2) means replace every sk in PG by
∑

rεR [(w(r)]k .
This substitution can be called the Pólya substitution in combinatorics, and facilitates
computing equivalences classes of all maps RD, with group G acting on the set D. One
can assign say a weight b for blue color, g for green, r for red, v for violet then the Pólya
process is tantamount to replacing every sk in the cycle index by bk +gk +rk +vk . . ....
This in turn generates a polynomial in b, g, r, v.. such that the coefficient of a typical
term w

b1
1 w

b2
2 . . . . . . wbn

n generates number of equivalence classes of patterns for b1

123



708 J Math Chem (2014) 52:703–728

colors of type 1 with weight w1, b2 colors of the type 2 with weight w2. . ...bn colors
of the type n with weight wn.

De Bruijn’s theorem [59] generalizes Pólya’s theorem when the group G acts on
the object set D and for a special case where the set R has just two interchangeable
colors. Consider a set D of objects and a set R of two different colors (say red and
blue).If G is a permutation group acting on D and let H be a permutation group of two
elements {b) (r), ((br)} of colors. Now consider all maps f : D → R. All such maps
constitute the set RD . In De Bruijn’s formulation two different Pólya G-equivalence
classes (patterns) under the action of G become equivalent under the action of H if
there are two representatives in these patterns such that one is transformable into the
other by the action of h ε H in the color group . In mathematical terms consider for
each g ε D, f ε RD , the mapping γg : RD → RD defined by

γg ( f ) = h f g, (3)

γg permutes RD for h ε H. The de Bruijn theorem gives the number of distinct patterns
(equivalence classes) under the action of both G on D and the permutation h acting on
R, the set of colors for the special case that there are only 2 colors and the permutation
is imply the switching of the two colors.

In this set up according to de Bruijn [59], the generating function for the equivalence
classes of patterns under the action of both G and H is

G F = PG (sk → μk) , (4)

where

μk =
∑

rεR

w(r)w(hr)w(h2r)w(h3r) . . . w(hk−1r),

hkr = r (5)

Consider coloring vertices of a tetrahedron with 2 colors, say blue and red under the
action of the tetrahedral point group Td acting on the set D and thus R is a set of two
colors, red and blue. The group H comprising of two permutations is H = {(b)(r), (br)}.
The cycle index of the Td group for four vertices is

PTd = 1

24
[s4

1 + 6s2
1 s2 + 8s1s3 + 3s4

2 + 6s4) (6)

Let us construct the needed μ1,μ2, etc., since h = (br) there is no h such that hz = z
for z ε R. Thus = μ1 = 0, and more over since h2 = (br)(br) = (b)(r) both red and
blue colors in R are left invariant under the action of h2. Thus

μ2 =
∑

g,b

w(r)w(hr) = 2br,

μ3 =
∑

g,b

w(r)w(hr)w(h2r) = 0

μ4 =
∑

g,b

w(r)w(hr)w(h2r)w(h3r) = r2b2 + r2b2 = 2r2b2 (7)
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Fig. 3 Number of equivalence classes of patterns for the face colorings of cube under the action of both
cubic group on the faces and the S2 color group acting on white and green colors, switching the white and
green colors. The patterns invariant to both actions of G and H are shown in this figure and correspond to
the coefficient of w3g3 in the de Bruijn’s enumeration scheme (Color figure online)

If we continue this process we can show that

μk =
{

2(rb)k/2 i f 2|k
0 otherwise

(8)

Thus, the equivalence classes under the action of both G and H is given by

G F = PTd (sk → μk)

= 1

24
[04 + 6.02.2rb + 8.0.0 + 6(2r2b2) + 3(2rb)2]

= r2b2 (9)

Thus the only pattern that is invariant under the action of both G on the set of vertices
of a tetrahedrons and the color inversion group S2 acting on R, the set of two colors is
the pattern that contains 2 blue colors and 2 red colors.

When de Bruijn’s theorem is applied to coloring the faces of a cube again with 2
colors, white or green, we obtain the de Bruijn generating function as 2w3g3 since
μ1 = μ3 = 0,μ2 = 2wg and μ4 = 2w2g2 the 2 patterns are shown in Fig. 3.

2.2 The Harary–Palmer power group enumeration

The power group theorem is formulated starting with the diagram shown in Fig. 4. As
can be seen from this figure, we have two sets D and R, and the corresponding groups
G and H acting on these two sets respectively. The most generalized version of power
group theorem that yields generating functions in the form of variables x, y, z and so
on can be obtained by defining the set R with colors white, blue, green, red, purple and
so on such that white is fixed with weight w(white) = 0, and not interchanged with any
colors; the group H says permutes colors of one set such that weights of all colors in
the set are same, that is, w(all colors in the first set) = 1. In the generating function the
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Fig. 4 HG is the power group that acts on RD , the set of all functions from the set D tof objects to the
set R of colors. We call the group G the group of objects acting on the set D of objects which could be
vertices, edges, faces or segments and H the color group acting on the set the set R of colors. The power
group enumeration seeks generating functions for the equivalence classes or orbits of the set RD of all
functions from D toR that are equivalent under the action of both G on D and H on R

colors with weights 1 are thus designated with the label x. Likewise, interchangeable
colors of the second set such that weights of all colors in that set w(all colors in the
second set) = 2, are thus designated with the label y in the generating function and
so on. In the most general case then the power group enumeration theorem can be
expressed as follows:

The Harary–Palmer Power Group Enumeration theorem in multi-variable
power series form: The configuration counting series C(x,y,z..) that enumerates all
equivalence classes of functions under the action of power group HG on the set RDof
all functions from D to R is given by

C(H G; x, y, z, . . .) = 1

|H |
∑

hεH

Z(G; c1(h, x, y, z), c2(h, x, y, z), . . . . . . ..cm(h, x, y, z)) (10)

where

Ck(h, x, y, z, . . .) =
∑

i

∑

j

∑

l

⎛

⎝
∑

s|k

(
s js(hi , h j , hl

)
⎞

⎠ xki yk j zkl , (11)

where we use the standard mathematical notation s | k for all s that divide k, and thus
the sum is over all integers s that divide k. This sum is obtained using the Mobius
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inversion formula, however, it is best illustrated using the cycle type of the permuta-
tion h in the group H which is further subdivided into various color sets within the
set R that are equivalent because of the action of H. That is, all equivalent colors in
the ith set of R with the same weight (labeled by x) would be contained within the
hi component of the permutation h, all equivalent colors in the jth set with the same
weight (labeled by y) would be contained within the hj component of the permuta-
tion h, and so on.We also note that Z(G; s1, s2, . . .sm) is the standard Pólya cycle
index polynomial of the group G as determined by its action on the set D shown
in Eq. (1).

A special case of the Harary–Palmer power group theorem [60] in single-variable
x, which is commonly illustrated in the graphical enumeration of Harary and Palmer,
is given by

The Harary–Palmer Power Group Enumeration theorem in single-variable
power series form: The configuration counting series C(x) that enumerates all equiv-
alence classes of functions under the action of power group HG on the set RD of all
functions from D to R is given by

C(H G; x) = 1

|H |
∑

hεH

Z(G; c1(h, x), c2(h, x), . . . . . . ..cm(h, x)) (12)

where

Ck(h, x) =
∑

i

⎛

⎝
∑

s|k
(s js(hi ))

⎞

⎠ xki , (13)

where once again we use the standard mathematical notation s|k for all s that divide
k, and thus the sum is over all integers s that divide k.

The power group enumeration theorem is best illustrated with a necklace of four
beads with three colors, white, blue and red such that white (pearl) is fixed while the
blue and red beads are completely interchangeable. Thus our set D is a set of four
vertices arranged in a square and R is the set of white, blue and red colors. Therefore,
the group G acting on the set is the dihedral group D4 acting on the vertices of a
square while the color group H acting on colors is simply the permutation group S2 =
{(w)(b)(r), (w)(br)}, as white is always fixed allowing only interchange of blue and red
colors. If we assign the weights w(white) = 0, w(blue) = w(red) = 1 then the generating
function C(SD4

2 ; x) obtained from the power group theorem enumerates the number
of unique necklaces with k colors (blue or red) and 4-k white colors for a necklace of
4 beads.

As a first step, we construct the relevant cycle types, cycle index polynomials,
etc., which is similar to the Pólya process of constructing the standard cycle index
polynomials from the respective groups. Let us consider the S2 group of colors with
the permutations {(w)(b)(r), (w)(br)}, the cycle types of the two permutations are
shown below: Thus we have
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Cycle type per-
mutation

j1 (number of
1-cycles)

j2 (number of
2-cycles)

j3 (number of
3-cycles)

j4 (number of
4-cycles)

(w)(b)(r) 3 0 0 0
(w)(br) 1 1 0 0

For h = (w) (b) (r) c1 (h, x)

= 1 + 2x, c2 (h, x) = 1 + 2x2, . . . .ck (h, x) = 1 + 2xk, (14)

For h = (w)(br) c1(h, x) = 1, c2 (h, x) = 1 + 2x2, . . . .ck(h, x) = 1 if k is odd or
1 + 2xk if k is even.

Consequently, we obtain

C
(

SD4
2 , x

)
= 1

2

{
Z(D4; 1 + 2x, 1 + 2x2, 1 + 2x3, 1 + 2x4) + Z(D4; 1, 1

+2x2, 1, 1 + 2x4)
}

(15)

Z(D4; s1, s2, s3, s4) is the standard cycle index of the group D4 acting on the vertices
of a square and it is given by

Z(D4; s1, s2, s3, s4) = 1

8

{
Z(s4

1 + 2s4 + 3s2
2 + 2s2

1 s2

}
(16)

Replacing every s1, s2, s3 and s4 by the corresponding c1, c2, c3 and c4 functions
respectively, thus obtained above for each permutation h in H, we obtain the power
group enumeration generating function,

C
(

SD4
2 , x

)
= 1 + x + 4x2 + 3x3 + 4x4, (17)

Thus there is one necklace with 4-beads all white(pearls), one with three whites and
one of color, and four necklaces with 2 whites and two of colors and 3 necklaces with
one white and three of color and four necklaces with only blue and red colors (Fig. 5).

Consider coloring the interior segments (slices of a hexagonal pie) of a hexagon
with four colors, namely, white(fixed) and colors green, blue, and red are completely
interchangeable. The power group theorem in the power series form enumerates
equivalences classes of colorings for such a case. We formulate the problem with
D being the six interior segments of a hexagon with the R set being {white, blue,
green, red}. Given that white is fixed, and colors b, g, r can be completely inter-
changed, we have the group H = S1 × S3 = S3, where S1 is simply the group acting
on white by itself and S3 is the group of 6 permutations of colors b, g, and r. Thus
the permutations of the group H are {(w)(b)(g)(r), 2(w)(bgr), 3(w)(bg)(r)}, where we
group all permutations with identical cycle structures together or all permutations in
the same conjugacy class are coupled together for simplicity. The group G is the D6
dihedral group acting on the segments of a regular hexagon. We also assign the weights
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Fig. 5 All distinct necklaces with pearls (white) and two colored beads (red and blue) such that blue and
red colors are interchangeable. All of these patterns are enumerated by the power group theorem with

coefficients of xk yielding k colored beads (red or blue) and n-k pearls (white) in C(S
D4
2 , x) (Color figure

online)

w(white) = 0, w(blue) = w(green) = w(red) = 1. Given this set up, the power group
enumeration generating function is constructed as follows:

For the permutation (w)(b)(g)(r) in S3j1 (h1) = 1, j1(h2) = 3 and all other jk(hi) =
0, for all k > 1. Thus we obtain

C1((w) (b) (g) (r); x) = 1 + 3x; C2 ((w) (b) (g) (r) ; x)

= 1 + 3x2; . . . ..Ck ((w) (b) (g) (r) ; x) = 1 + 3xk; (18)

For the permutation type (w)(bg)(r) in S3j1 (h1) = 1, j1(h2) = 1, j2(h2) = 1, and all
other jk(h2) = 0, for all k > 2, and and all other jk(h1) = 0, for all k > 1. Thus we
obtain

C1((w) (bg) (r) ; x) = 1 + (
1j1 (h2)

)
x = 1 + x; (19)

C2((w) (bg) (r) ; x) = 1 + (
1j1 (h2) + 2j2 (h2)

)
x2 = 1 + 3x2; (20)

C3((w) (bg)(r); x) = 1 + (
1j1 (h2) + 3j3 (h2)

)
x3 = 1 + x3; (21)

. . ...Ck((w)(bg)(r); x) = 1 + xk if k is odd and1 + 3xk if k is even. (22)
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For the permutation type (w)(bgr) in S3j1 (h1) = 1, j1(h2) = 0, j2 (h2) = 0, j3
(h2) = 0, and all other jk(h2) = 0, for all k > 3, and all other jk(h1) = 0, for all
k > 1. Thus we obtain

C1((w) (bgr) ; x) = 1 + (
1j1 (h2)

)
x = 1; (23)

C2((w) (bgr); x) = 1 + (
1j1 (h2) + 2j2 (h2)

)
x2 = 1 + 0.x2 = 1; (24)

C3 ((w)(bgr) ; x) = 1 + (
1j1 (h2) + 3j3 (h2)

)
x3 = 1 + (0 + 3) x3

= 1 + 3x3; (25)

. . ...Ck((w)(bgr); x)

= 1 if k if not a multiple of 3 and1 + 3xk if k is a multiple of 3 (26)

Thus for the power group SD6
3 we obtain,

C(SD6
3 , x) = 1

6
{Z(D6; 1 + 3x, 1 + 3x2, . . . .., 1 + 3x6)

+3Z(D6; 1 + x, 1 + 3x2, 1 + x3, 1 + 3x4, 1 + x5, 1 + 3x6)

+2Z(D6; 1, 1, , 1 + 3x3, 1, 1, , 1 + 3x6)} (27)

Next we evaluate the various Z(D6; . . .) indices needed for substitution in the above
expression. These are readily obtained from the cycle index of the D6 group with each
of the conjugacy class expressed as permutation of the segments of the hexagon under
consideration. Thus we have

Z(D6; s1, s2, s3, s4, s5, s6)) = 1

12
{Z(s6

1 + 2s6 + 3s2
3 + 4s2

2 + 3s2
1 s2

2 } (28)

Replacing each sk in the above cycle index of the D6 group with the corresponding
functions we obtain the various Z(D6 : . . ..) needed for the power group enumeration
as follows:

Z(D6; 1 + 3x, 1 + 3x2, 1 + 3x3, 1 + 3x4, 1 + 3x5, 1 + 3x6)

= 1

12
{Z((1 + 3x)6 + 2(1 + 3x6) + 2(1 + 3x3)2

+4(1 + 3x2)3 + 3(1 + 3x)2(1 + 3x3)2}
= 1 + 3x + 18x2 + 55x3 + 126x4 + 135x5 + 92x6 (29)

Z(D6; 1 + x, 1 + 3x2, 1 + x3, 1 + 3x4, 1 + x5, 1 + 3x6)

= 1

12
{Z((1 + x)6 + 2(1 + 3x6) + 2(1 + x3)2

+4(1 + 3x2)3 + 3(1 + x)2(1 + 3x3)2}
= 1 + x + 6x2 + 5x3 + 14x4 + 5x5 + 12x6 (30)

Z(D6; 1, 1, 1 + 3x3, 1, 1, 1 + 3x6)

= 1

12
{Z(16 + 2(1 + 3x6) + 2(1 + 3x3)2
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+4(1)3 + 3(1)2(1)2}
= 1 + x3 + 2x6 (31)

Consequently, by substituting the three Z(D6; . . ..) expressions thus obtained into the
power group generating function for C(SD6

3 ; x), we obtain

C(SD6
3 , x) = 1

6
{1 + 3x + 18x2 + 55x3 + 126x4 + 135x5 + 92x6

+3(1 + x + 6x2 + 5x3 + 14x4 + 5x5 + 12x6)

+2(1 + x3 + 2x6)} = 1 + x + 6x2 + 12x3 + 28x4 + 25x5 + 22x6 (32)

The power group enumeration series thus obtained suggests that there is one hexagonal
pattern with all 6 pie segments with white color, one of them with 5 white and 1 color
(any of b,g, or r), six patterns with 4 white and 2 colors (chosen from any of blue,
green or red), twelve with three whites and three colors, 28 with 2 whites and 4 colors,
25 with 1 white and 5 colors and 22 patterns with all segments of hexagons carrying
colors b, g or r. Figure 6 shows the 22 patterns thus enumerated by the power group
enumeration theorem with all six segments carrying colors chosen from blue, green
or red.

3 The generalized character cycle indices for all irreducible representations

The present author [33] has formulated the cycle index polynomials for each irre-
ducible representation of the molecular point group or for any group acting on a set
of objects. These generalized character cycle index polynomials and the related ten-
sor products [69,70] and Schur functions [65–71] have been shown to have powerful
applications. In the context of molecular and NMR spectroscopy Balasubramanian
[33] has shown that these polynomials are very useful in generating nuclear spin sta-
tistical weights of rovibronic levels patterns, nuclear spin functions, and in NMR and
ESR spectroscopies. A generalized character cycle index (GCCI), Pχ

G, for an irre-
ducible representation � with character χ of the group G acting on a set D is defined
as

Pχ
G = 1

|G|
∑

gεG

χ(g)sb1
1 sb2

2 . . . . . . sbn
n (33)

where
∑

gεG sb1
1 sb2

2 . . . . . . sbn
n is a sum over all permutational representations of g ε G

that generate b1 cycles of length 1, b2 cycles of length 2, . . ...bn cycles of length n
upon its action on the set of nuclei under consideration. Each term in the cycle index
depends on the orbits of the permutational operations that are generated upon the
action of g.

The GCCI thus introduced has many important applications in spectroscopy, gen-
eration of symmetry-adapted functions, and so on. For example, the nuclear spin
species 209Bi8 cubic clusters can be generated for all irreducible representation sof
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Fig. 6 Twenty-two patterns
under power group enumeration
for coloring interior segments of
a hexagon with colors blue,
green and red such that the
colors are fully interchangeable.
The power group SD6

3 is
obtained from the D6 group
acting on the six segments of a
hexagon and the S3 group acting
on colors. The most general
form of configuration counting
series is obtained by the
four-color problem with white
fixed and blue, green, red
interchangeable. The expression
thus obtained generates various
patterns of which coefficient of
x6 generates equivalence classes
of patterns with all six segments
colored with b, g or r as shown in
this figure (Color figure online)
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the Oh group. As 209Bi is a spin-9/2 nucleus, there are 10 different spin orientations
(mf) values for each 209Bi nucleus. Let the 10ms spin functions of 209Bi be labeled
by α1, α2, . . . α10, where α1 represents ms = −9/2, α2 represents ms = −7/2. . .. and
α10 stands for ms = 9/2. Then the GCCI of the A2g representation for the 209Bi8
cubic cluster would give the generating function for nuclear spin functions of Bi9 that
would transform as A2g representation in the Oh group. The GCCI for A2g of the Oh
group acting on the vertices of a cube is given by

P
A2g

G = 1

48

[
s8

1 + 3s4
2 + 3s4

2 + s4
2 − 6s4

1 s2
2 − 6s4

2 − 6s2
4 − 6s2

4 + 8s2
1 s2

3 + 8s2s6

]

= 1

48

[
s8

1 + s4
2 − 6s4

1 s2
2 − 12s2

4 + 8s2
1 s2

3 + 8s2s6

]
(34)

If one replaces every sk in the above expression by αk
1 + αk

2 + . . . . + αk
m we get the

generating function for the nuclear spin functions of Bi9 cluster that transform as A2g .
That is,

G Fχ = Pχ
G (sk →

∑

i

αk
i ) (35)

The above function evaluation requires an expansion of a series of decanomials
obtained as follows. The decanomial spin generating functions can be formulated
by using [n], an ordered partition of n into 10 parts such that

n1 ≥ 0, n2 ≥ 0, . . . .., n10 ≥ 0,

10∑

i=1

ni = n (36)

Then a multinomial expansion in α’s is defined as

(α1 + α2 + .... + α10)
n =

∑

[n]

(
n

n1 n2 . . . n10

)
α

n1
1

n2
α
2

...α
n10
1 (37)

where

(
n

n1 n2 . . . n10

)
are multinomial coefficients, and the sum is over all such

ordered partitions or compositions of the integer n into p parts. The multinomial
coefficients satisfy,

(
n + q

n1 n2 . . . n10

)

=
∑

[k]=n

(
n

k1 k2 . . . k10

)(
q

n1 − k1 n2 − k2 . . . n10 − k10

)
(38)

where [k] stands for all ordered partitions of n such that k1 +k2 + . . . .+k10 = n, with
ki non-negative integers. Thus for the A2g representation 209Bi nuclear spin generator
is given by
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G F A2g = 1

48
[(α1 + α2 + . . . + α10)

8 + (α2
1 + α2

2 + . . .

+α2
10)

4 − 6(α1 + α2 + . . . + α10)
4(α2

1 + α2
2 + . . . + α2

6)2

−12(α4
1 + α4

2 + . . . + α4
10)

2 − 8(α1 + α2

+ . . . + α10)
2(α3

1 + α3
2 + . . . + α3

10)
2

−8(α2
1 + α2

2 + . . . + α2
10)(α

6
1 + α6

2 + . . . + α6
10)] (39)

The coefficient of a typical term α
m1
1 αm2

2 . . . ..α
m10
10 yields the number of 209Bi nuclear

spin functions containing m1 α1 spins, m2 α2 spins . . ...m10 α10 spins that trans-
form according to the A2g irreducible representation. These coefficients can then be
sorted according to the total mF quantum numbers to generate all nuclear spin multi-
plets.

4 Generalization of the Harary–Palmer power group enumeration to all
irreducible representations of object group G and color group H

The GCCI formulation and its application to nuclear spin numeration with 10 differ-
ent colors provide us with a motivation to generalize the Harary–Palmer power group
enumeration [60]. In many such spectroscopy and quantum chromodynamics appli-
cations we are dealing with an object set D of particles arranged according to some
symmetry of the lattice. The set R is the set of colors which may represent different
nuclear spin orientations or flavors of the particles. The group G acting on the set D
of particles is clearly determined by the arrangement of the particles or the molecu-
lar symmetry or the non-rigid permutation-inversion group symmetry depending on
the case. The group H acting on the colors is often determined by the nature of the
physical problem, for instance, in nuclear spin statistics, it would be the permutation
that inverts the spin projections −mf with +mf . That is, for the case of 209Bi with
spin-9/2 the group is S2 comprised of identity and the permutation that switches −mf
with +mf , that is, (−9/2 9/2)(−7/2 7/2)(−5/2 5/2)(−3/2 3/2)(1/2 1/2) where in each
parentheses we have an orbit of 2-elements permuting −mf with +mf . The color
symmetry is here is that of inversion some times, denoted as, the group Revi, when it
involves reversal or inversion of i spin orientations (i=10), as in the case of 209Bi the
color group S2 can be donated further as Rev10. Given such a color group R acting
on colors (spin orientations or flavors of quarks, etc..) and given the group G action
of the set D of particles, the power group enumeration theorem can be formulated for
all irreducible representations of both groups G and H in HG power group acting on
RD, set of all functions from D to R. For most of the physical applications thus far, it
appears the special case where the irreducible representation of the group H is fixed to
the totally symmetric representation with all irreducible representations of G provide
valuable information. However we formulate the power group enumeration theorem
for all irreducible representations of G and H.

Let β ∈ G be an irreducible representation of the group G while � ∈ H be an
irreducible representation of the group H. Furthermore let us assume that there are
two types of colors, a fixed white color and remaining colors are all interchangeable,
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and that the weights for colors are w(white) =0, and w(colors)=1, for all colors. Then
the power group generating function for a single variable x Cβ∈G

�∈H (H G; x) is given by
the following expressions for all irreducible representations in the group G and H.

Cβ∈G
�∈H (H G; x) = 1

|H |∑

h∈H

χ�(h)Zβ(G; c1(h, x), c2(h, x), c3(h, x), . . . . . . .., ck(h, x)) (40)

where

Ck(h, x) =
∑

i

⎛

⎝
∑

s|k
(s js(hi )

⎞

⎠ xki (41)

Note that the above power group generating function for all irreducible representations
can also be readily generalized to multi-variables x,y,z etc., when colors are partitioned
into multiple sets (more than 2) such that only colors within a set are permuted and
are thus equivalent.

The special case of the above generalization for � = A1 (totally symmetric repre-
sentation) of the group H gives an important result. That is, for � = A1 for the H group,
the Cβ∈G

A1∈H (H G; x) function generates the number of symmetry-adapted functions in

RD that transform as the irreducible representation β in G. That is the coefficient xk

in Cβ∈G
A1∈H (H G; x) generates the number of functions with k colors and n−k white in

in RD that transform according to β in G under the equivalence action of the group H
acting on the colors in the set R.

Yet another special case of the power group theorem when both � = A1 (totally
symmetric representation) and β = A1 (totally symmetric representation) for both
groups G and H, then the generating function obtained for the power group becomes
the Harary–Palmer power theorem that has been used extensively in the enumeration
of graphs of different kinds and finite automata.

We now illustrate the power group generalization with different examples. Con-
sider the colorings of vertices of a triangle with four different colors {w,b,g,r} such
that white is fixed and colors are all permuted. Thus we have the group D3 acting
on the vertices of a triangle and the group S3 acting on the three colors b, g, r with
white fixed. Let us consider the generating functions for which the irreducible rep-
resentation of the S3 group of colors is totally symmetric. Then the various GFs for
the irreducible representations of the group D3 are obtained using the power group
theorem generalization:

CA1
(

SD3
3 , x

)
= 1 + x + 2x2 + 2x3 (42)

CE
(

SD3
3 , x

)
= 1/6

[
ZE

(
D3; 1 + 3x, 1 + 3x2, 1 + 3x3

)

+3ZE
(

D3; 1 + x, 1 + 3x2, 1 + x3
)

+ 2Z
(

D3; 1, 1, 1 + 3x3
)]

,

where ZE (s1, s2, s3) = 1/6
[
2s3

1 − 2s3

]
, (43)
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We obtain each of the ZE generating function needed to evaluate the power group
generating function for the irreducible representation E as follows:

ZE
(

D3; 1 + 3x, 1 + 3x2, 1 + 3x3
)

= 1/6
[
2 (1 + 3x)3 − 2

(
1 + 3x3

)]

= 3x + 9x2 + 6x3 (44)

ZE
(

D3; 1+x, 1+3x2, 1+x3
)
=1/6

[
2 (1+x)3 − 2

(
1 + x3

)]
= x + x2 (45)

ZE
(

D3; 1, 1, 1 + 3x3
)

= 1/6
[
2 (1)3 − 2

(
1 + 3x3

)]
= −x3, (46)

Finally substituting the expressions for different ZE’s thus obtained we get,

CE
(

SD3
3 , x

)
= 1/6

[(
3x + 9x2 + 8x3

)
+ 3

(
x + x2

)
+ 2

(
−x3

)]

= x + 2x2 + x3. (47)

Thus there is one E function in the set of functions that contain one color and two
whites, two E functions in the set that contains one white and 2 colors and one E
representation in the set that has all vertices of the triangle colored with g, r, or b
such that the colors are all permuted by the group S3. It can be readily seen that the
symmetry-adapted linear combinations for the coloring with all three different colors
that transform as E is:

E :
{

1
6 (2bgr−rbg−grb)

1√
2
(rbg−grb)

(48)

As another non-trivial example that requires some computational labor, let us consider
46 functions for the colorings of pie segments of a hexagon with 4 different colors
{w,b,g,r} such that white is fixed but b,g, and r are all permuted by the group S3. In
order to apply the power group enumeration for all characters, we need to first obtain
the action of the permutation h in the group S3 as this is the first step toward applying
the power group. For the case of set R={w,b,g,r} with the group S3 permuting the
colors b,g,r with w fixed, we have already obtained the various generators for the
action of h in H for each of its conjugacy class. These are given by Eqs. (18)–(26)
already obtained before for the ordinary power group enumeration for the power group
SD6

3 for coloring the interior segments of a hexagon. The needed generators for the
totally symmetric A1 representation for the D6 group for this has already been obtained
as

ZA1(D6; 1 + 3x, 1 + 3x2, 1 + 3x3, 1 + 3x4, 1 + 3x5, 1 + 3x6)

= 1 + 3x + 18x2 + 55x3 + 126x4 + 135x5 + 96x6

Z A1(D6; 1 + x, 1 + 3x2, 1 + x3, 1 + 3x4, 1 + x5, 1 + 3x6)

= 1 + x + 6x2 + 5x3 + 14x4 + 5x5 + 12x6 (49)

Z A1(D6; 1, 1, 1 + 3x3, 1, 1, 1 + 3x6) = 1 + x3 + 2x6 (50)
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Thus assembling the ZA1 polynomials we obtain the generating function for the power
group for the A1 representation which has been obtained before as

C A1∈D6
A1∈S3

(x) = 1 + x + 6x2 + 12x3 + 28x4 + 25x5 + 22x6 (51)

We illustrate this with the A2 irreducible representation of the S3 group and A1 irre-
ducible representation for the D6 group. The power group generating function for this
case is given by

C A1∈D6
A2∈S3

(x) = 1

6

{
1 + 3x + 18x2 + 55x3 + 126x4 + 135x5 + 92x6

−3(1 + x + 6x2 + 5x3 + 14x4 + 5x5 + 12x6) + 2(1 + x3 + 2x6)
}

= 7x3 + 28x4 + 20x5 + 10x6 (52)

Likewise the generating function for the E representation of the S3 group and the A2
representation of the D6 group is obtained as

C E∈D6
A2∈S3

(x) = 1

6
{2(1 + 3x + 18x2 + 55x3 + 126x4 + 135x5 + 92x6)

−2(1 + x3 + 2x6)}
= x + 6x2 + 18x3 + 42x4 + 45x5 + 30x6 (53)

In order to compute all generating functions for all representations of the power group it
would be easier to construct a table of all Zβ(D6; x) polynomials for all the irreducible
representation of the group D6 for each of the conjugacy class type of the group S3. This
table is constructed by repetitive application of the various cycle type representations
for the permutations in the conjugacy classes of the S3 group for each irreducible
representation of the D6 group. As there are 3 conjugacy classes in the S3 group and
6 irreducible representations in the D6 group, we obtain a 6 × 3 table of polynomials
as shown in Table 1.

We can construct the generating functions for the power group for the various
irreducible representations of the group D6 and the color group S3 using Table 1. For
example, for the case of E2 representation of the D6 group and the E representation of
the S3 group the power group generating function is obtained using the polynomials
listed in the last row of Table 1. Thus we obtain

C E2∈D6
E∈S3

(x) = 1

6
{2(3x + 24x2 + 89x3 + 207x4 + 243x5 + 124x6)

−2(−x3 − 2x6)}
= x + 8x2 + 30x3 + 69x4 + 81x5 + 42x6 (54)

The power group generating functions thus obtained for all the irreducible represen-
tations of the group D6 acting on the six segments of the hexagon and for all the
irreducible representations of the group S3 acting on three colors b, g, and r with
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Table 1 Various components for the generating functions for the generalized power group enumeration
theorem for the irreducible representations of hexagonal D6 group for the four color problem (including
white) with the S3 group acting on colors (not white)

� Irred. Rep β

Zβ(D6; 1 + 3x, 1 + 3x2,

1 + 3x3, 1 + 3x4,

1 + 3x5, 1 + 3x6)

Zβ(D6; 1 + x, 1 + 3x2,

1 + x3, 1 + 3x4, 1 + x5,

1 + 3x6)

Zβ(D6; 1, 1, 1 + 3x3,

1, 1, 1 + 3x6)

A1 1 + 3x + 18x2 + 55x3 +
126x4 + 135x5 + 92x6

1 + x + 6x2 + 5x3 +
14x4 + 5x5 + 12x6

1 + x3 + 2x6

A2 6x2 + 37x3 + 81x4 +
108x5 + 46x6

−2x2 − x3 − 7x4 −
4x5 − 4x6

x3 + 2x6

B1 9x2 + 37x3 + 90x4 +
108x5 + 46x6

x2 −x3 +2x4 −4x5 +2x6 x3 + x6

B2 3x + 12x2 + 55x3 +
108x4 + 135x5 + 73x6

x + 5x3 + 5x5 − 2x6 x3+x6

E1 3x + 21x2 + 89x3 +
198x4 + 243x5 + 116x6

x + x2 + 3x3 − 2x4 +
x5 − 4x6

−x3 − x6

E2 3x + 24x2+89x3 +
207x4 + 243x5 + 124x6

x + 4x2 + 3x3 + 7x4 +
x5 + 4x6

−x3 − 2x6

Table 2 Generalized power group enumeration generating functions for the irreducible representations of
hexagonal D6 group acting on faces (or vertices) of a hexagon for the four color problem (including white)
with the S3 group acting on three colors other than white

D6 S3

A1 A2 E

A1 1 + x + 6x2 + 12x3 +
28x4 + 25x5 + 22x6

7x3 + 14x4 + 20x5 +
10x6

x + 6x2 + 18x3 +
42x4 + 45x5 + 30x6

A2 6x3 + 10x4 + 16x5 +
4x6

2x2 + 7x3 + 17x4 +
20x5 + 9x6

2x2 + 12x3 + 27x4 +
36x5 + 12x6

B1 2x2 + 6x3 + 16x4 +
16x5 + 6x6

x2 + 7x3 + 14x4 +
20x5 + 7x6

3x2 + 12x3 + 30x4 +
36x5 + 15x6

B2 x + 2x2 + 12x3 +
18x4 + 25x5 + 9x6

2x2 + 7x3 + 18x4 +
20x5 + 16x6

x + 4x2 + 18x3 +
36x4 + 45x5 + 24x6

E1 x + 4x2 + 16x3 +
32x4 + 41x5 + 17x6

3x2 + 13x3 + 34x4 +
40x5 + 21x6

x + 7x2 + 30x3 +
66x4 + 81x5 + 39x6

E2 x + 3x2 + 16x3 +
38x4 + 41x5 + 22x6

2x2 + 13x3 + 31x4 +
40x5 + 18x6

x + 8x2 + 30x3 +
69x4 + 81x5 + 42x6

Coefficient of xk generates functions with k colors and n-k whites

white fixed are shown in Table 2. The generating functions shown in Table 2 provide
exhaustive information for all of 46 functions of the set RD. In particular the first
column is of particular geometrical and physical interest as this generates the number
of irreducible representations contained in the RD functions that transform as the irre-
ducible representation of the D6 group for various distributions of colors. That is the
coefficient of xk is the number of times the irreducible representation occurs in the
set RD for k colors and 6-k white colors. The first diagonal element in Table 2 is the
ordinary power group enumerator.
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As the octahedral group of a cube occurs in many applications and it is the spe-
cial case of hypercubic group in 3-dimension, representation by the wreath product
S3[S2], it occurs in a number of applications including the 209Bi8 cluster, a number
of octahedral molecules and so on. Thus we illustrate the power group enumeration
for this case. Consider the case of vertices of a cube with four different colors among
which white is fixed and b,g,r are allowed to be permuted. The cycle index of the Eu
irreducible representation for the action on the vertices of the cube is given by

P Eu
G = 1

48

[
2s8

1 − 8s2
1 s2

3 − 2s4
2 + 8s2s6

]
(55)

We have already obtained the relevant Ck polynomials for the various conjugacy
classes of the S3 group for the four-color problem. Thus we have

C Eu∈Oh
E∈S3

(x) = 1

6
{2Z Eu (Oh; 1 + 3x, 1 + 3x2, 1 + 3x3, . . . . . . 1 + 3x8)

−2Z Eu (Oh; 1, 1, 1 + 3x3, . . . . . . 1 + 3x6, 1, 1)} (56)

The individual polynomials in the above expression are evaluated as follows:

Z Eu (Oh; 1 + 3x, 1 + 3x2, 1 + 3x3, . . . . . . 1 + 3x8)

= 1

48
[2(1 + 3x)8 − 8(1 + 3x)2(1 + 3x3)2

−2(1 + 3x2)4 + 8(11 + 3x2)(1 + 3x6)]
= 9x2 + 62x3 + 228x4 + 558x5 + 845x6 + 720x7 + 258x8 (57)

Z Eu (Oh; 1, 1, 1 + 3x3, 1, 1, 1 + 3x6, 1, 1) = 1

48
[2(1)8 − 8(1)2(1 + 3x3)2

−2(1)4 + 8(1)(1 + 3x6)]
= −x3 − x6 (58)

By way of substituting the above two expressions in to the power group generator
formula we obtain,

C Eu∈Oh
E∈S3

(x) = 1

6
{2[9x2 + 62x3 + 228x4 + 558x5 + 845x6 + 720x7 + 258x8]

−2(−x3 − x6)} = 3x2 + 21x3 + 76x4 + 186x5 + 282x6 + 240x7 + 86x8

(59)

We can obtain the entire set of power group generating functions for all irreducible
representations of the Oh group and for all irreducible representations of the S3 color
group through repeated applications of the above process. The power group enumera-
tion method when generalized to all irreducible representations, thus, yields plethora
of important combinatorial results.
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5 Application to symmetric groups Sn and special unitary groups SU(n)

The connection between the SU(n) group and Sn group provides an avenue for the
treatment of multi-particle wavefunctions of fundamental particles in terms of the
irreducible representations of the Sn groups and the associated generalized Young
Tableau. In chemical context many-electron wavefunctions can be generated by the
Schur function algebra of the Sn groups and the associated generalized Young Tableau
with filling the cells with spin up (α) or spin down (β). In quantum chromodynam-
ics the wave functions for the fundamental particles can be constructed by associat-
ing symbols u, d and s for the three flavors of quarks. Here again the general case
involves the Schur functions of the Sn group for the SU(n) algebra. This results in the
Weyl tableaus where the cells of the young tableau for the irreducible representations
[65–67] of the Sn group are filled with quark flavors u, d, s in a specified lexicographic
order (u,d,s). We shall illustrate this with patterns as enumerated by the Schur-functions
[65–67] of the symmetric groups Sn. The irreducible representations of Sn are char-
acterized by Young diagrams for the various partitions of an integer n, denoted by [n].
The states of many-particles (including bosons and fermions) that possess multiple
spin orientations can be represented by generalized young Tableau. Figure 7 shows
all possible generalized Young Tableau of the partitions of 6 occupied by six particles
that have three spin orientations (for example, a spin-1 particle such as the bosonic
deuterium nucleus) with the possibility that 2 have the first kind of spin orientation, 2
have second kind and last 2 particles have the third kind. We denoted this by [122232]
shape as shown below in Fig. 7.

As can be seen from Fig. 7, the GYTs have numbers in any column in strictly
ascending order while the numbers in any row must be in non-decreasing order. These
tableaus represent the nuclear spin functions that transform according to the particular
irreducible representation that the diagram represents. It is interesting to note that for
a spin-1 particle such GYTs can have at the most 3 rows and likewise for electrons,
which are spin-1/2 particles, the GYTs can have at the most 2 rows. In general for a
spin-j particle there can only be at most 2j+1 rows in the GYTs. The same tableaus
also become the Weyl tableaus for fundamental particles of strong interactions when
1 is mapped to u, 2 is mapped to d and 3 is mapped to s. The resulting symmetry-
adapted wavefunctions represent the various 1/2ixed symmetry states of the Baryons
in quantum chromodynamics.

The enumeration of GYTs for the various shapes of spin distributions can be accom-
plished through polynomials called the Schur functions [65–67] of the symmetric
group Sn. The Schur function corresponding to a partition λ of n is denoted by {λ}
and it is defined as

{λ} = 1

n!
∑

gεG

χλ(g)s
b1
1 s

b2
2 .....s

bn

n (60)

whereχλ(g) is the character value for g in the group G=Sn corresponding to the
irreducible representation [λ] of the group Sn. Indeed S-functions are the GCCIs of
the symmetric groups Sn. To illustrate the Schur function corresponding to the partition
4+1+1 of 6 is given by the Schur function, {6;4,1,1,}, shown below:
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Fig. 7 Generalized Young Tableau (GYT) for the partition of 6 for a spin-1 Boson (e.g., Deuterium)
corresponding to the spin distribution 2 particles with the first spin orientation, 2 with the second orientation,
2 with the third or [122232] shape

{6; 4, 1, 1} = 1

720

[
10s6

1 + 30s4
1 s2 + 40s3

1 s3 − 90s2
1 s2

2

−120s1s2s3 − 30s3
2 + 40s2

3 + 120s6

]
(61)

The generators for the GYTs can be obtained by replacing every sk in the Schur
function or S-function by

∑
i λk

i . The coefficient of a typical term λ
a1
1 λ

a2
2 . . . . . . λ

am
m

in the generating function thus obtained yields the number of GYTs with the shape
[1a12a2 . . . .mam ]. The GYT generators are so powerful that they also enumerate the
atomic states when applied to electronic spin functions which are GYTs with only 2
rows. In addition to the symmetric group Sn acting on the particles if there is a group H
that acts on the colors of the set R, which is most commonly the reversal group, Revi,
defined by two operations, identity, and reversal of colors, we have a situation where
direct application of the current generalization of the Harary–Palmer power group
theorem [60] arises. For nuclear spins of n/2-spin particle, the color group would be
{(−n/2). . .. . .(−1/2). . .. . .(n/2), (−n/2 n/2). . ...(−i/2 i/2). . .. . ...(−1/2 1/2)}.

6 Conclusion

In this paper we have generalized the Harary–Palmer power group enumeration theo-
rem to all the irreducible representations of the group G acting on the set D of objects

123



726 J Math Chem (2014) 52:703–728

Fig. 8 Left a Face colorings of an icosahedron with three colors (blue, green and red). There are 320

all possible face coloring mappings in the set RD, 312 all possible vertex-colorings and 330 all possible
edge-colorings for an icosahedron. Right b one of 432 face coloring maps of Buckminsterfullerene with 4
colors (blue, green, red and violet); there are 490 edge coloring maps and 460 vertex coloring maps for the
soccer ball buckminsterfullerene, many of which are equivalent under the action of the icosahedral Ih group
and color group . There are 654 = 1.7394784 × 1018 Avogadro number of possible face coloring maps for
a Rubik’s cube with the group G acting on the faces of the Rubik’s cube, which is the direct product of 2
wreath products: S8[C3] × S12[C2] comprising of 8! × 38 × 12! × 212 or 519,024,039,293,878,272,000
permutations (Color figure online)

and the group H acting on the set R of colors. The generalization was shown to yield
powerful results in multiple areas of chemistry, physics and mathematics, and it is of
general interest in the context of color symmetry. There still remain many problems
and applications of this powerful color combinatorial group theory. For example, there
are 320 functions that map colors to the faces of an icosahedron with 3 colors and one
such coloring is shown in Fig. 8a.

The generalization of power group enumeration can yield not only the unique
patterns for different colors but also nuclear spin distributions, nuclear spin statis-
tics and interesting information on the chirality of colorings. We foresee many such
future applications including to fullerene cages, nanotubes, high symmetry virus parti-
cles, non-rigid proteins, and self-assembled monolayers of functionalized mesoporous
materials. More detailed applications of these methods to multiple-quantum NMR,
ESR spectroscopies and chirality [71] will be the subject of future studies. Another
important topic has to do with generalization of the power group enumeration to
the hypercubic groups, which are wreath products of Sn[S2] in n-dimensional space
and these groups have applications both in chemistry and quantum chromodynamics.
More recently the theory of non-rigid molecular symmetry in terms of wreath products
groups is shown to have important applications in our understanding of chirality of
biosystems through the functionality of intrinsically disordered proteins [72,73]. It
appears that intrinsically disordered non-rigid proteins are more likely to be involved
in moonlighting functionality than ordered proteins, and thus understanding the non-
rigid group theory, especially group-subgroup chain relations seem to play a critical
role in our understanding the catalytic behavior of these proteins. That is, our under-
standing of the fuzzy lock-and-key mechanism can be enhanced through matching
group/subgroup subduction chains between these proteins and binding sites through

123



J Math Chem (2014) 52:703–728 727

mirror relations or chirality. Therefore combinatorial group theory of the non-rigid
disordered protein structures is important to understand chirality in biosystems [71–
73] and moonlight functionality of proteins in nature, and hence the generalization
of power group enumeration developed here could result in such novel biological
applications.

References

1. A.V. Belov, N.V. Shubnikov, Color Symmetry, first edition. McMillan (Pergamon Press, 1964) 263p
2. W. Opechowski, R. Guccione, in Magnetism, vol. 2A, Chap. 3, eds. G.T. Rado, H. Suhl, (Academic

Press, New York, 1965)
3. R.L.E. Schwarzenberger, Colour symmetry. Bull. Lond. Math. Soc. 16, 209–240 (1984)
4. D.B. Litvin, W. Opechowski, Spin groups. Physica 76, 538–554 (1974)
5. R. Lifshitz, Rev. Mod. Phys. 69, 1181 (1997)
6. J. Kappraff, Connections, The Geometric Bridge Between Art and Science, 2nd edn. The (World

Scientific Publishing co, 2001), 470 pp
7. W.M. Gibson, B.R. Pollard: Symmetry Principles in Elementary Particle Physics. (Cambridge Univer-

sity Press, Cambridge, 1980), 402p
8. P.G. Tait, Remarks on the colourings of maps. Proc. R. Soc. Edinb. 10, 729 (1880)
9. V.R. Nagarajan, Hosting the divine: the Kolam in Tamil Nadu in Mud, Mirror, and Thread: Folk

Traditions of Rural India (ed.) N. Fisher, (Museum of New Mexico Press, 1993)
10. V.R. Nagarajan, Drawing down desires: woman, ritual, and art in Tamil Nadu. Forma 22, 127–128

(2007)
11. K. Balasubramanian, in Symmetry in Cultural Context: An Interdisciplinary Workshop, vol. 1, ed. by

D. Nagy Arizona State University, Tempe, AZ, 1987, pp. 12–15
12. W.S. Warren, A. Pines, J. Chem. Phys. 74, 2808 (1981)
13. K. Balasubramanian, Mol. Phys. 107, 797–807 (2009)
14. K. Balasubramanian, Relativistic Effects in Chemistry (Wiley-Interscience, Parts A & B, 1997)
15. S. Simon, L. Baia, A. Radu, J. Raman Spectrosc. 37, 183 (2006)
16. M.-Y. Liao, G.S. Harbison, J. Chem. Phys. 111, 3077 (1999)
17. A.P. Reyes, R.H. Heffner, P.C. Canfield, J.D. Thompson, Z. Fisk, Phys. Rev. B 49, 16321 (1994)
18. K. Balasubramanian, K.S. Pitzer, H.L. Strauss, J. Mol. Spectrosc. 93, 447 (1982)
19. K. Balasubramanian, Chem. Phys. Lett. 183, 292 (1991)
20. K. Balasubramanian, Chem. Phys. Lett. 318, 15 (2004)
21. K. Balasubramanian, J. Math. Chem. 35, 345 (2004)
22. K. Balasubramanian, Chem. Phys. Lett. 391, 69 (2004)
23. R.B. King, J. Math. Chem. 7, 51 (1991)
24. R.B. King, Applications of Graph Theory and Topology in Inorganic Cluster and Coordination Chem-

istry. (CRC Press, Boca Raton, 1993)
25. R.B. King, Mol. Phys. 100, 1567 (2002)
26. A.T. Balaban, Chemical Applications of Graph Theory (Academic Press, New York, 1976)
27. A.T. Balaban, M. Banciu, V. Ciorba, Annulenes, Benzo-, Hetero-, Homo-Derivatives and Their Valence

Isomers, vol. 3, chapter 8 (CRC Press, Boca Raton, Florida, 1986)
28. K. Balasubramanian, Chem. Rev. 85, 599 (1985)
29. K. Balasubramanian, J. Chem. Phys. 95, 8273 (1991)
30. K. Balasubramanian, T.R. Dyke, J. Phys. Chem. 88, 4688 (1984)
31. K. Balasubramanian, J. Comput. Chem. 3, 69 (1982)
32. K. Balasubramanian, J. Comput. Chem. 3, 75 (1982)
33. K. Balasubramanian, J. Chem. Phys. 74, 6824 (1981)
34. K. Balasubramanian, J. Chem. Phys. 75, 4572 (1981)
35. V. Krishnamurthy, Combinatorics: Theory and Applications (Harwood, New York, 1985)
36. S. Fujita, Symmetry and Combinatorial Enumeration in Chemistry (Springer, Berlin, 1991)
37. G. Pólya, R.C. Read, Combinatorial Enumeration of Groups, Graphs and Chemical Compounds

(Springer, New York, 1987)
38. E. Ruch, D.J. Klein, Theor. Claim. Acta 63, 447 (1963)

123



728 J Math Chem (2014) 52:703–728

39. D.H. Rouvray, Chem. Soc. Rev. 3, 355 (1974)
40. K. Balasubramanian, Theor. Chim. Acta 51, 37 (1979)
41. K. Balasubramanian, Theor. Chim. Acta 53, 129 (1979)
42. K. Balasubramanian, Indian J. Chem. 16B, 1094 (1978)
43. K. Balasubramanian, J. Magn. Reson. 48, 165 (1982)
44. K. Balasubramanian, J. Magn. Reson. 91, 45 (1991)
45. K. Balasubramanian, Int. J. Quantum Chem. 20, 1255 (1981)
46. K. Balasubramanian, J. Phys. Chem. 86, 4668 (1982)
47. K. Balasubramanian, J. Chem. Phys. 78, 6358 (1983)
48. K. Balasubramanian, J. Chem. Phys. 78, 6369 (1983)
49. K. Balasubramanian, Group Theory of Non-rigid Molecules and its Applications. Elsevier Publishing

Co. 23, 149–168 (1983)
50. K. Balasubramanian, Theor. Chim. Acta 78, 31 (1990)
51. K. Balasubramanian, J. Math. Chem. 14, 113 (1993)
52. W. Hässelbarth, Theor. Chim. Acta. 61, 91 (1984)
53. A.T. Balaban, Enumerating isomers, in Chemical Graph Theory ed. by D. Bonchev, D.H. Rouvray

(Gordon Beach Publishers, 1991)
54. A.T. Balaban, Rev. Roum. Chim. 15, 463 (1970)
55. R.C. Read, Math. Mag. 60, 275 (1987)
56. R.A. Davidson, J. Am. Chem. Soc. 103, 212 (1981)
57. J.H. Redfield, Am. J. Math. 49, 433 (1927)
58. N.G. de Bruijn, in Applied Combinatorial Mathematics ed. E.F. Beckenbach (Wiley, New York, 1964)
59. N.G. de Bruijn, J. Comb. Theory 2, 418 (1967)
60. F. Harary, E.M. Palmer, Graphical Enumeration (Academic Press, New York, 1979)
61. H.C. Longuet-Higgins, Mol. Phys. 6, 445 (1963)
62. K. Balasubramanian, J. Chem. Phys. 72, 665 (1980)
63. K. Balasubramanian, J. Chem. Phys. 120, 5524 (2004)
64. R.B. King, Dalton Transactions (2003) p. 395
65. D.E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups (Clarendon

Press, Oxford, 1950)
66. W. Ledermann, Introduction to Group Characters, 2nd edn. (Cambridge University Press, Cambridge,

1987)
67. I.G. MacDonald, Symmetric Functions and Hall Polynomials (Clarendon Press, Oxford, 1979)
68. H.O. Foulkes, Cand. J. Math. 18, 1060 (1966)
69. G. Williamson, J. Comb. Theory 11 (1971) 122; 8 (1970) 163
70. R. Merris, Linear Algebra Appl. 29, 255 (1980)
71. G.H. Wagniére, On Chirality and the Universal Asymmetry, Reflections on Image and Mirror Image.

Wiley-VCH, Zürich, Switzerland (2007)
72. R. Wallace, Nat. Proc. 4 (2011), hdl:10101/npre.2011.6413.1: Posted 14 Sep 2011
73. R. Wallace, Mol. BioSyst. 8, 374 (2012)

123


	Generalization of the Harary--Palmer power group theorem to all irreducible representations of object and color groups- color combinatorial group theory
	Abstract
	1 Introduction
	2 De Bruijn theorem and the Harary--Palmer power group enumeration theorem
	2.1 De Bruijn's theorem and Pólya preliminaries
	2.2 The Harary--Palmer power group enumeration

	3 The generalized character cycle indices for all irreducible representations
	4 Generalization of the Harary--Palmer power group enumeration to all irreducible representations of object group G and color group H
	5 Application to symmetric groups Sn and special unitary groups SU(n)
	6 Conclusion
	References


